SOFTWARE

VERIFICATION

TEAM [3] PROJECT
CTIP WITH STATIC ANALYSIS

INDEX

» REVIEW CTIP

A STATIC ANALYSIS TOOL

A CTIP WITH SAT

REVIEW CTIP

“CONTINUOUS TEST & INTEGRATION PLATFORM”

WHY DO WE NEED

CTIPe

@ - W

CONTINUOUS INTEGRATION

BASED JENKINS

STATIC ANALYSIS TOOL

DON'T SHOOT THE MFSSENGERI
oe\\l gl 7‘}'0«\
18 6

checksty e

JJJ%CQNXD COBERTURA

ava Code Coverage

PMD
STATIC ANALYSIS TOOL

What does 'PMD' mean?

) Editme &

We've been trying to find the meaning of the letters PMD - because frankly, we don’t really know. We just think the letters
sound good together.

However, in the spirit of the Computing Industry, we have come up with several “backronyms” to explain it.
PMD...
e Pretty Much Done
* Project Mess Detector
Project Monitoring Directives
Project Meets Deadline
Programming Mistake Detector
Pounds Mistakes Dead
PMD Meaning Discovery (recursion, hooray!)
Programs of Mass Destruction
Programming Meticulous coDe

A ‘Chaotic Metal’ rock band name (%'

PMD
STATIC ANALYSIS TOOL

PMD 6.14.0 PMD 6.14.0

About e

User Documentation ||

Rule Reference A Rule Reference

X Rules
i v Apex Rules

Ecmascript Rules
P Ecmascript Rules

Java Rules

Java Rules

Java Server Pages Rules
Maven POM Rules
PLSQL Rules

Best Practices

Code Style
Salesforce VisualForce Rules

VM Rules

Design

Documentation
XML Rules

XSL Rules

Error Prone

Multithreading
Language Specific
Documentation

Performance

Security
Developer Documentation

Project documentation

PMD
STATIC ANALYSIS TOOL

* Analyze the files. Either single threaded or multi-threaded parallel. This task is encapsulated in
net.sourceforge.pmd.processor.PMDRunnable :

o Create input stream
o Call source code processor (net.sourceforge.pmd.SourceCodeProcessor):
1. Determine the language
. Check whether the file is already analyzed and a result is available from the analysis cache

. Parse the source code. Result is the root AST node.

2
3
4. Always run the SymbolFacade visitor. It builds scopes, finds declarations and usages.
5

. Run DFA (data flow analysis) visitor (if at least one rule requires it) for building control flow graphs and data
flow nodes.

. Run TypeResolution visitor (if at least one rule requires it)
. FUTURE: Run multifile analysis (if at least one rule requires it)
. Execute the rules:
« First run the rules that opted in for the rule chain mechanism

* Run all the other rules and let them traverse the AST. The rules can use the symbol table, type
resolution information and DFA nodes.

e The rules will report found problems as RuleViolations.

* Render the found violations into the wanted format (XML, text, HTML, ...)

PMD
STATIC ANALYSIS TOOL

AvoidUsingNativeCode
Since: PMD 4.1
Priority: Medium High (2)

Unnecessary reliance on Java Native Interface (JNI) calls directly reduces application portability and increases the
maintenance burden.

This rule is defined by the following XPath expression:
//Name[starts-with(@Image, 'System.loadLibrary')]
Example(s):

public class SomeJNIClass {

public SomeJNIClass() {
System.loadLibrary("nativelib");
}

static {
System.loadLibrary("nativelib");
}

public void invalidCallsInMethod() throws SecurityException, NoSuchMethodException {
System.loadLibrary("nativelib");
}

Use this rule by referencing it:

<rule ref="category/java/codestyle.xml/AvoidUsingNativeCode" />

FINDBUGS
STATIC ANALYSIS TOOL

indB\;g's

because it's easy

Description
BC: Equals method should not assume anything about the type of its argument
BIT: Check for sign of bitwise operation
CN: Class implements Cloneable but does not define or use clone method
CN: clone method does not call super.clone()
CN: Class defines clone() but doesn't implement Cloneable
CNT: Rough value of known constant found
Co: Abstract class defines covariant compareTo() method
Co: compareTo()/compare() incorrectly handles float or double value
Co: compareTo()/compare() returns Integer.MIN_VALUE
Co: Covariant compareTo() method defined

DE: Method might drop exception

DE: Method might ignore exception

DMI: Adding elements of an entry set may fail due to reuse of Entry objects

DMI: Random object created and used only once

DMI: Don't use removeAll to clear a collection

Dm: Method invokes System.exit(...)

Dm: Method invokes dangerous method runFinalizersOnExit

ES: Comparison of String parameter using == or I=

ES: Comparison of String objects using == or I=

CHECKSTYLE
STATIC ANALYSIS TOOL

checkstyle

Style Configurations

This section contains tables to display coverage Java styles by Checkstyle.

» Google's style;
e Sun's style.

CHECKSTYLE
STATIC ANALYSIS TOOL

Google's Java Style Checkstyle Coverage

Useful Information

This coverage report was created for Google Java Style @(cached page) , version of 28 February 2017
Checkstyle's html report for Guava library @

Checkstyle configuration for 'Google Java Style' @

Legend

"

-=" = There is no rule in this paragraph.

"|" - This paragraph is the high-level point of some group.

- Existing Check covers all requirements from Google.

- Existing Check covers some part of requirements from Google.
- Requirements are not possible to check by Checkstyle at all.

Coverage Table

1 Introduction
1.1 Terminology notes
1.2 Guide notes

2 Source file basics

2.1 File name @ outerTypeFilename config
test =@

2.2 File encoding: UTF-8 (7] explanation =

PMD
STATIC ANALYSIS TOOL

PMD Trend

O O
Enlarge Configure

PMD Result
Warnings Trend

All Warnings New Warnings Fixed Warnings
2 0 0

Summary

Total High Priority Normal Priority Low Priority
2 0 0 2

Details
Warnings | Origin | Details

File Type Category
App.java:15 v DataflowAnomalyAnalysis Error Prone

App.java:16 N DataflowAnomalyAnalysis Error Prone

FindBugs Result
Warnings Trend

All Warnings
1

Summary

Total High Priority
1 0

Details
Origin | Details

File
App.java-1

FINDBUGS
STATIC ANALYSIS TOOL

FindBugs Trend

New this build Fixed Warnings
0 0

Normal Priority Low Priority
1 0

Commit ID

A

Enlarge Configure

CHECKSTYLE
STATIC ANALYSIS TOOL

Checkstyle Trend

P oF i i
Enlarge Configure

CheckStyle Result
Warnings Trend

All Warnings New Warnings

Fixed Warnings
19 0

0
Summary

Total High Priority
19 0

Normal Priority Low Priority

19 0

Details
People | Categories | Types || Wamings | Origin Details

Author Total Distribution

iiaii <jhun9409@naver.com= 10

phm0127 <0_ogog@naver.coms 9
Total

19

CHECKSTYLE
STATIC ANALYSIS TOOL

Static Analysis Warnings

Congratulations History

v/

No issues have been reported

Information Messages

Searching for all files in '/var/jenkins_home/workspace/CTIP_EX_static_analysis' that match the pattern 's*/build/reports/pmd/'
-> found 4 files

Successfully parsed file /var/jenkins_home/workspace/CTIP_EX_static_analysis/build/reports/pmd/main.html

-> found @ issues (skipped @ duplicates)

Successfully parsed file /var/jenkins_home/workspace/CTIP_EX_ static_analysis/build/reports/pmd/main.xml

-> found @ issues (skipped @ duplicates)

Successfully parsed file /var/jenkins_home/workspace/CTIP_EX_static_analysis/build/reports/pmd/test.html

-> found @ issues (skipped @ duplicates)

Successfully parsed file /var/jenkins_home/workspace/CTIP_EX_static_analysis/build/reports/pmd/test.xml

-> found @ issues (skipped @ duplicates)

Searching for all files in '/var/jenkins_home/workspace/CTIP_EX_static_analysis' that match the pattern 's*/build/reports/findbugs/’
-> found 2 files

Successfully parsed file /var/jenkins_home/workspace/CTIP_EX_static_analysis/build/reports/findbugs/main.xml

-> found @ issues (skipped @ duplicates)

Successfully parsed file /var/jenkins_home/workspace/CTIP_EX_static_analysis/build/reports/findbugs/test.xml

-> found @ issues (skipped @ duplicates)

No valid reference build found that meets the criteria (NO_JOB_FAILURE - SUCCESSFUL_QUALITY_GATE)

ALl reported issues will be considered outstanding

No quality gates have been set - skipping

Health report is disabled - skipping

COBERTURA
STATIC ANALYSIS TOOL

COBERTURA

Cobertura 2.1.1

Cobertura is a free Java tool that calculates the percentage of code accessed by tests. It can be used to
identify which parts of your Java program are lacking test coverage. It 1is based on jcoverage.

JACOCO
STATIC ANALYSIS TOOL

Code Coverage
@ Covered [Missed

Conditional 0.07%
Line IEPIRR 0.15%

Instruction EUREER 0.12%

Method iR 0.27%

Class EEtl 0.59%

File PEES 0.85%

Package 5.26%

Group 100.00%

Report 100.00%

O -
E N
1)
o
o
S
o
(&

SONARQUBE

STATIC ANALYSIS TOOL

== Lines to Cover = Coverad Lines

July 24, 2015, 4:34 PM

- 456 Lines to Cover
= 416 Covered Lines

40 Uncoverad Lines
88.7% Coverage

Events: O

s wblic void injectressage(MrodicerdroreExchange praducerExchange,
A *NullPointerExosption® could be ! ! "

thrown; "getFilten)” can retum rull. 1 u lﬂ!x»l}crt__l » :n]hclllnu!ﬁ sroduterCechange, mexsagefend | ; Detect B u g s
& Bug

i Ll A "NullPointerException” could be thrown; * . :
oception” could be thrown; *getFitter)* can return mnul,
g_ B Bupg @ Maior O Open~ Net iscgrad » 10min afiot Comeent
e e v L » Issues raised by SonarQube are on either demonstrably

R - prtunte (TR, . ceccesitmr grriiear) | wrong code, or code that is more likely not giving the

if ([Filter == null: {
rsort a <DOCTYPE:»> declaration to Ly |

bedore thia <htmi> o - ettt mmtobiciretenp Yo = (Mtobieorc intended behavior. Find trickiest bugs navigating easily

B O e : it = a0w PisougivCercept it ae(omms) through the code paths while pointing out issues found in
Add a Tavicon' decharation in this 6 mitasleRrokerFilter sptinns(11 1%er);
‘hmadnr tag. 17 } catch (B Exception ¢) (

i LOG.error "Tailled to creute Messapgelintu-ceptortilter” mU|tiple Iocations.
X Bug @ Wopr - , . {“railed wel terril ,

SONARQUBE

STATIC ANALYSIS TOOL

Code Smells

"Smelly” code does (probably) what it should, but it will be
difficult to maintain. In the worst cases, it will be so confusing
that maintainers can inadvertently introduce bugs. Examples
include duplicated code, uncovered code by unit tests and too
complex code.

/7 dusplbj:
durplbj: function(spec) {
var val « "cundefined>";

try {
val = eval("this."+spec).toString();

Review the arguments of this *eval” call to make sure they are validated.
6 Vinerablity © Critical O Open » Not assigned * 30min effort Comment

} cateh(exception) {

}

I this.dump(spec + "=" + val « "\n");
b

nanespace Adworks . MVC.Controllers

{
public class HomeController : Controller

public IActionResult Index()
{

dynamic obj = "hello”;

Remove this useless assignment to local variable 'obj*',
@ Code Smell @ Major O Open + Notassgned * 15min effort Comment

2monthsago ~ L15 %

W cert, cwe, unusad ~

ob] = new { name = “fred” };
obj = 18;

Security Vulnerability

It's probably Pollyanna-ish to think you'll never be targeted
by hackers. When you are, what vulnerabilities will they find
in your system? SonarQube helps you find and track the
insecurities in your code. Examples include SQL injection,
hard-coded passwords and badly managed errors.

SONARQUBE
STATIC ANALYSIS TOOL

Activate The Rules You Need

SonarQube code analyzers include default Quality Profiles that
offer strong value with non-controversial rule sets. The default
Quality Profiles will work for most projects, but you can easily
tune them to fully match your needs.

The rules page enables to find rules by multiple criteria, alone or
in combination. From the search results you can activate or
deactivate rules in your Quality Profile.

Iif ... alsa 1* constructs shoukt and with “sise” clauses v @ Coda Smwll W oart, mism Y

Control structures should use curly braces Java & Code Smell W cert, misra, pitfal

Equality operators shauld not be used in *for Java @ Code Smal W cert, owe, misra, SLGPICIOUS
loop terminabian conditions

Foatng pont numbars should not ba tested far aquality Jwa B Bug @ mism Y

Functions should not be defined with a varatie number Java & Code Small & cart, misea, pitfal Y
of arguments

Increment (++) and decrement (—) operalors shoulkd not be Jova & Code Smell $ oort, misma

usad in a method call or mved with olther operators in an
CXADIMESS0N

Explore All Execution Paths

SonarQube relies on several path-sensitive dataflow engines
and thus code analyzers explore all possible execution
paths to spot the trickiest bugs.

Even a simple function containing only 10 different
branches might lead to 100 different possible execution
paths at runtime. Manually checking that those 100
execution paths are error proof is simply impossible.

SONARQUBE

STATIC ANALYSIS TOOL

CTIP WITH SAT

CONTINUOUS INTEGRATION

BASED JENKINS

N sonarqube
naode

DEMONSTRATION

Q&

“EVERYTHING”

THANKS

